
THE LANGUAGE TECHNOLOGY KENDRA

Development of a Nepali-
English MT System
Using the Apertium MT Platform

Aish Raj Dahal

7/7/2011

This document provides the detailed report on the development of a free and open source
Nepali-English MT System based upon the Apertium MT platform.

1

Acknowledgements

I would like to thank Mr Bal Krishna Bal of the Department of Computer Science and
Engineering, Kathmandu University for providing his valuable mentorship for the project. I
would also like to thank Language Technology Kendra for providing the resources like the
corpus required for the project. Also, I would like to thank Mr. Francis M Tyers of Universitat
d'Alacant, (University of Alicante) Spain for the support regarding the Apertium MT System.

2

Introduction

This document describes the development of the Nepali-English Language Pair using the
Apertium Machine Translation Platform.
Machine Translation is a relatively newer field of research and development for a language
like Nepali, which despite of having a wide native community lacks the e-resources. In this
regard, an attempt was made to augment the existing resources developed from various
past projects into building a full-fledged Rule Based Machine Translation System for Nepali
based upon the Apertium Machine Translation System.
The Apertium Machine Translation Platform is a free and open source Machine Translation
Platform. It evolved from the “Open-Source Machine Translation for the Languages of
Spain” (“Traducción automática de código abierto para las lenguas del estado español”). It is
a shallow-transfer machine translation system, initially designed for the translation between
related language pairs, although some of its components have been also used in the deep-
transfer architecture that has been developed in the same project for the pair Spanish-
Basque.

3

Background and Previous Works

Nepali is one of the official languages of Nepal. It is the mother tongue of little more than
half of the population of Nepal and a lingua franca for the rest. Nepali is also spoken in the
neighboring countries of Nepal like India, Bhutan and Burma. The Nepali language belongs
to the Indo-Aryan branch of the Indo-European language family. It is written in the
Devanagari script and is a free word order language. There are 11 vowels and 33 consonants
in Nepali. It is a highly inflectional and agglutinative language. Experimental findings have

shown that a single verb like पल्ट can inflect up to as many as 320 different forms (Bal,

2007; Bal et Al, 2007a, 2007b).
First works on English to Nepali machine translation was done under the “Dobhase” Project.
Dobhase, developed by (Bista, 2006) is a transfer based Machine Translation System which
currently handles the translation of simple declarative English sentences to Nepali. The
system currently constitutes a bi-lingual dictionary of 22,000 words. The system architecture
of the Dobhase Machine Translation System is shown in Figure 1.

Figure 1 The Dobhase MT System

Thapa and Tandukar (2007) have worked on the enhancement of Dobhase after its official
release in July, 2006. The enhancement study showed that the quality of translation can be
expected to improve if restricted to a specific domain as well if the resources for the target
language, i.e. Nepali within the system are enhanced. This involves more work on the lexical
transfer and syntax transfer rules as well as Nepali Morph generator.
Parallel to Dobhase, several other Projects have been executed in the past resulting in the
development of several useful linguistic resources for Nepali. Some of these include works
on the Nepali Morphological Analyzer and the Stemmer (Bal et. al., 2007), Nepali Spell
Checker, Nepali Computational Grammar Analyzer (Prajwal et. al., 2008; Rozina et al., 2010)
etc. These works are available primarily in the link www.nepalinux.org.

4

The Apertium Machine Translation System

Apertium is a free/open-source rule-based MT platform. It provides the necessary engine,
tools and data for a large number of language pairs to build MT systems. All these
components are distributed under the GNU General Public License.2 Building new systems
or adapting an existing one in Apertium means simply writing the appropriate linguistic data
for a particular language pair. Data and engine were fully decoupled in the original design to
this aim. Linguistic data consist of monolingual and bilingual dictionaries, transfer rules and
some other data useful for part-of-speech tagging (to help lexical disambiguation) and post-
generation tasks (such as contractions or apostrophes). These components belong to the
regular language pair package. It comes along with configuration and Makefile files to
perform the compilation and installation of data to be used in binary format by the engine.
This binary format (finite-state transducers (Garrido et al., 1999)) makes Apertium very fast
with very low hardware requirements (translation speed is around 10,000 words per second
in a basic desktop PC). All data are represented in XML-based formats to make them
reusable and to ease interoperability. Both translation directions of a language pair can be
represented in a single language package where normally the same monolingual and
bilingual dictionaries (with restrictions depending on the translation direction) are shared.
The other files are dependent on the translation direction. The first two language pairs in
Apertium (Spanish-Catalan and Spanish-Galician in both translation directions) and the first
version of the engine and tools were released in 2005. The system was aimed at dealing
with related languages and was inspired in the technology of two previous systems
developed at the Universitat d’Alacant: interNOSTRUM 3 (Canals-Marote et al., 2001) and
Traductor Universia 4 (Garrido-Alenda et al., 2004). Currently, 27 language pairs have been
released and many others are started or in development. The engine has been improved
along the years to deal with not so related languages (3-level transfer), to be Unicode
compliant and to give support to translation memories, new file formats, multiple
translations of a given word, representation of language variants, polysemy or specific
domain vocabulary. A wide variety of applications and tools have also been developed for
Apertium, such as a version of the bilingual dictionaries for mobile devices, a tool for
translating subtitles, UI to ease diagnose, add-ons for Firefox, etc. Engine, tools, data and
other add-ons around Apertium are being developed by a worldwide community which
involves individuals, research groups, public or private organizations and companies. All
these efforts result in a continuous improvement of the Apertium platform.

Further information about the Apertium’s working model and adding of a new language pair
can be found at http://wiki.apertium.org/wiki/Apertium_New_Language_Pair_HOWTO

http://wiki.apertium.org/wiki/Apertium_New_Language_Pair_HOWTO

5

Framework of the Apertium Machine Translation System

Figure 2 The Apertium MT System

The system and the platform itself have been deeply described in many papers such as in
(Forcada et al., 2009). We stress here only the features helping to understand the
customization performed for Autodesk. The system works as a pipeline of independent
modules which produce raw translations of contents in various formats. The modules inside
Apertium are the following (see Figure 2):

 Modules for format processing:
They are in charge of separating (without removing) the original format information from
text to be translated and restore the format at the end of the translation process. The
deformatter and the reformatter are the modules that perform this processing.

 Modules for lexical processing:
They use the information contained in the monolingual and bilingual dictionaries. These are:
- The morphological analyzer: It provides all the possible lexical forms (consisting of
lemmas and morphological information) for each word (surface form) in the original text.
- The lexical transfer of the transfer module: It performs the word-by-word (or
multiple-word-by-multiple-word) translation of each lexical form delivered by the
morphological analyzer and, if needed, disambiguated by the lexical disambiguator.
- The morphological generator: It generates the correct surface form for each lexical
form of a word coming from the transfer module.
- The post-generator: It performs some orthographical tasks such as contractions.

 Lexical disambiguator: it provides, based on probability estimates, one single lexical
interpretation (and the most probable but not always the correct) of an ambiguous word
corresponding for which the morphological analyzer delivers to more than one lexical form.

6

 Structural transfer module: it performs one or three pass transfer operations (depending
on the language pair) to apply structural changes between source and target language such
as gender number or case agreement, reordering, changes in verb tenses (including clitics)
or verbal structures, changes in prepositions, generation or deletion of partitives, articles,
prepositions or subject pronouns for non-pro-drop languages, etc.

7

Design and Framework of the Nepali English Language Pair

The most fundamental requirements in the Apertium's assembly of modules are the
Morphological Analyzer for any language pair, the Part-of-speech tagger and the bilingual
lexicon (F. M. Tyers et al. 2010). As these components formed the core of the machine
translation system, a great deal of planning was done in their development. In this regard,
despite of the fact that there existed a morphological analyzer and stemmer for Nepali (Bal
and Shrestha 2007), it could not be used with the Apertium engine as it was not based upon
the finite sate Lt-toolbox toolkit which Apertium uses. As a result of this drawback, the first
step was the design and development of a Nepali Morphological Analyzer based upon the
finite sate letter transducer based lt-toolbox toolkit. The aim was to use the available
resources for Nepali, developed as a result of the various past projects like Dobhase and
NeLRaLec and augment these resources to make use of the free and open source lt-toolbox
format. This would eventually pave the way towards the development of a Nepali
Morphological analyzer that would be based on the finite sate letter transducer and would
be compatible with the Apertium core engine. Furthermore, as the existing morphological
analyzer (Bal and Shrestha 2007) had a limited set of rules which disambiguated the surface
forms before giving the output, its usefulness was limited towards the development of a
Machine Translation system that required the output of the Morphological Analyzer to have
all possible forms of a given surface form. Thus, the first step taken towards building a
Machine Translation system was building a Nepali Morphological Analyzer right up from
scratch. The Part of Speech tagger training and the development of the bilingual transfer
lexicon followed it respectively.

8

Development of the Morphological Analyzer

1. Related Works

The development of the Nepali Morphological Analyzer was previously done by Bal and
Shrestha, 2007 under the Pan Localization Project. It involved a Java based Nepali
Morphological Analyzer and Stemmer which read from a set of rules in order to produce the
analyzed form from a given surface form. The system however lagged in the sense that it
was only a prototype, with a limited set of rules to analyze and stem word. Moreover, the
system was not able to produce the correct outputs for the words formed as result of
combination of two free morphemes. This limitedness of the system coupled up with its
incompatibility with the Apertium machine translation system led to the development of a
Nepali Morphological Analyzer right up from Scratch.

2. Design
Since the morphological analyzer forms the most pivotal modules of the Apertium Machine
Translation System, a great care was taken during its design. One of such major tasks was
the selection of the words (surface forms) which would be recognized by the Morphological
Analyzer. This cumbersome task was successfully managed by taking into account the Zipf’s
Law.

The Zipf’s Law states that given some corpus of natural language utterances, the frequency
of any word is inversely proportional to its rank in the frequency table

This application of the Zipf’s Law was used to select the most frequently used 3700 words
from the Nepali National Corpus1. The Nepali National Corpus is collection of written Nepali
Text comprising of over eight hundred thousand words collected from different sources. The
corpus was prepared under the NeLRaLEC project.

3. Development

The development of the Nepali Morphological Analyzer was done in there phases namely
extraction, classification and compilation.

1. Phase I: Extraction

The primary stage in the development of the morphological analyzer was the extraction of
the words form the tagged Nepali National Corpus. This however was not a straightforward
task to be done as the Nepali National Corpus followed a XML based tagged format. Since in
the Nepali National Corpus, the words had already been tagged in XML as per their Part of
Speech category as per the NeLRaLEC tagset 2 , the straightforward extraction of the words
from the corpus was not possible.

1
 http://www.bhashasanchar.org/ncorpus_written.php

2
 http://www.bhashasanchar.org/pdfs/nelralec-wp-tagset.pdf

9

Due to this, the initial task involved the extraction of the words from the XML tagged corpus
based upon their NeLRaLEC tags. This was accomplished by running the several XML based
tools such as XQuery and XSLT based tools. This involved running the Open Source Saxon
XQuery Processer recursively on the Core Sample of the Nepali National Corpus. The
following is an example Xquery file that was processed by Saxon for the extraction of the
words under the category “RR” in the Nepali National Corpus:

<major_list>

{

 for $doc in

collection('file:///media/Aishraj/nnc_updated_ah/cs/onlyxml/?select=

*.xml')

 return $doc//w[@ctag='RR']

}

</major_list>

Also besides the category based extraction of words, the entire corpus was also converted
into text only form using Python Scripts to process each file recursively. Below given is the
Python snippet that was used for this task.

from xml.sax.handler import ContentHandler

import xml.sax

import os

import sys

import os

import string

_input_dir = '.'

xmllist=[]

_file_list = os.listdir(_input_dir)

for name in _file_list:

 if string.find(name,"xml")==-1:

 continue

 xmllist.append(name)

class textHandler(ContentHandler):

 def characters(self, ch):

 sys.stdout.write(ch.encode("UTF-8"))

for myxml in xmllist:

 parser = xml.sax.make_parser()

 handler = textHandler()

 parser.setContentHandler(handler)

 parser.parse(""+myxml)

With the NeLRaLEC tag based extraction as well as the raw of the words from the Nepali
National Corpus, the next step in the development involved the selection of the words form
these sources. For this the following Shell Script was used to generate the “Hitparade” of
words which displayed the words, along with their frequency of occurrence in descending
order.

10

cat demo.txt | tr ' ' '\012' | sort -f | uniq -c | sort -nr > hitparade.txt

Next, the most occurring words in both the raw corpus as well as the category based corpus
was chosen from this hit parade and based on Zipf’s law were selected to be the recognized
words in the corpus. In total more than 4200 words were chosen overall from all categories
to be included in the morphological analyzer’s recognition list.

2. Phase II: Classification

The selected words from the hit parade had to be then put up in the Apertium’s monodix
(monolingual dictionary) format in order to be compiled by the lt-toolbox engine that forms
a part of the Apertium’s Core. This task was simplified by a set of Python based tools that
are together known as Speling Tools. Below given is a brief description of these tools:

Speling Format:
The Speling format is an in intermediate format to store the linguistic information’s about
the various inflections that occur to a surface form. This format helps in easy manual
processing of the linguistic data in the monodix. It is represented by:

Lemma; surface form; linguistic info; Part-of-speech

Speling Paradigm:
The speling format files are processed by a Python Script known as the Speling Paradigm.
This tool generates an XML based paradigm and lemma modeled Apertium dictionary file in
.dix format.

Paradigm Chopper:
The output .dix file of the Spelling Paradigm may sometimes contain redundancy in
classification and allocation of the paradigm to the words. This redundancy can be removed
by running the paradigm chopper which removes the redundancy amongst the paradigms.

The Speling Tools are available under the GNU/GPL and can be found in Apertium SVN
under trunk/apertium-tools/speling.

In order to make use of the Speling Tools, the first requirement was to generate the suitable
lemma for the surface form. This task was done manually and the lemmas for the
corresponding surface forms were put in the Speling files. Also, as the NeLRaLEC tagset was
incompatible with the Apertium tagset3, the tagging of the words in the Speling format files
was done manually. This involved the creation of two new symbols to the Apertium tagset

the <ppd> and <ppe> for the दो and एको forms of the verbs. The remaining symbols were

used from the Apertium’s standard tagset.

3
 http://wiki.apertium.org/wiki/List_of_symbols

http://wiki.apertium.org/wiki/Apertium_SVN

11

3. Phase III: Compilation

The speling format based speling list files were then compiled first using the Speling
Paradigms. Then the Paradigms chopper was rum over it. The result was a full-fledged
Nepali monodix in Apertium’s .dix format. The .dix monodix was further converted into a
finite state letter transducer based Nepali Morphological Analyzer by using the lt-toolbox
finite state toolkit.

4. Testing and Evaluation

After the development of the Nepali Morphological Analyzer, tests were carried out in order
to measure its performance. As the total number of surface forms covered by the
morphological analyzer was just above 4500 words, there was a sense of limitedness in the
evaluation. However, as it contained the most frequent words, this limitedness was
overcome to an extent. The naïve precision and recall of the Morphological Analyzer was
calculated by the following formulae:

With further optimizations to the Morphological Analyzer, the precision for the top 1000
words from the recognized words was found to be 99.8% and recall to be 94.54%. Similarly,
the precision for the random 1000 words from the recognized words was found to be 99.6%
and recall to be 84.88%.

While running the morphological Analyzer over a web crawled sample of the Nepali National
Corpus, the naïve coverage was found to be 74.5 %.

12

Discussion

While the development of the Nepali Morphological Analyzer was achieved in a short span,
there is a lot of room for its further extension. Currently the analyzer is in preliminary stage
and its efficiency is limited by its failure at handling the prefix based words and negative
verbs.

To my knowledge, this is the first open- source attempt in creating a fully-functional wide-
coverage morphological analyzer and generator for Nepali that is publicly available to
everyone. All the tools that were used in this project are open source and the output, and
the toolset is available under the GNU GPL license.

13

Conclusion

With this much work in place, efforts are underway towards training the Apertium-tagger
for Nepali and the development of Bilingual English-Nepali Transfer rules. Since the
Apertium repository already has the resources for this it shall only be a matter of time
before a full-fledged stable, free and open source, multidirectional Nepali-English Machine
Translation System is ready.

